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Abstract. Tracking failures and poor performance across a widely distributed system of 
resources has proven challenging for many ongoing DOE applications. An example is the 
Open Science Grid (OSG) project, which currently experiences a roughly 15% job failure rate. 
This can be an issue not only for Grid computing but for anyone performing large-scale data 
transfers to remote machines because of the large number of interconnected components and 
services. 

As part of the Center for Enabling Distributed Petascale Science (CEDPS) project we have 
been building an infrastructure to work with current middleware and existing system tools to 
more easily track failures and discover anomalous behavior. This consists of a common 
logging format, the extension of syslog-ng for centralized collection of data, a data summarizer 
to more easily manage the volume of logging, and an anomaly detection system that can 
connect to a warning system when unexpected behaviors occur. We are currently working with 
OSG to deploy a prototype of the full system. The initial logs gathered will be used to extend 
the analysis tools and to increase the reliability of the services for the SciDAC end user 
community. 

1.  Introduction 
Many of today’s Grids have ongoing performance and reliability problems that have yet to be 
addressed. Grid2003, now Open Science Grid (OSG) [2], saw a 30% job submission failure rate [4], 
with 90% of the failures caused by problems such as disk filling errors, gatekeeper overloading, and 
network interruptions. This error rate has reduced in the past three years to around 15%, with the 
current goal of attaining a 90% success rate this year. Yet clearly having one of every ten job 
submissions fail is not truly acceptable in a production setting.  

Troubleshooting Grid middleware can be difficult because of the large number of interconnected 
components. For example, a single action, such as reliably transferring a directory of files, can result 
in the coordination of a wide suite of loosely coupled software tools. These include security software 
to handle the certificates, check permissions, perform delegation, and possibly encrypt the message 
streams, file transfer tools to check the disk space, set up the connections, and transfer data between 
resources, and reliability software that must understand retry policies, track transfer status behavior, 
and react to failures. Each of these systems typically creates its own log files in its own log format, 
and combining log information from several components in order to understand what caused a given 
failure can be challenging. However, this is exactly what is needed to troubleshoot a problem as it 
cascades from one component into the next. 



 
 
 
 
 
 

Sufficiently detailed log data is often not available in any form. For real-time debugging of 
interleaved and interrelated software stacks, we often need an execution trace, but logging at that level 
of detail can easily become unmanageable. For example, a full trace of the I/O operations performed 
by a single GridFTP server [1] capable of saturating a 10-gigabit network will generate O(20,000) log 
events per second, or over 70 million per hour. If Grid middleware components generally ran this level 
of detailed monitoring, the perturbation of the systems would be unacceptable. And yet logging only 
very coarse-grained information and asynchronous status messages, as is the common practice today, 
makes debugging failures a heroic effort. 

Because of its complexity and heterogeneity, Grid middleware lags behind stand alone system tools 
in terms of anomaly detection, where an anomaly is defined as an unexpected degradation in behavior 
that adversely affects application performance. Detecting failures is made more difficult by fault 
tolerance mechanisms such as retries in GridFTP transfers and most workflow engines, which may 
mask more serious errors. Detecting performance degradation is also complicated by high system 
variance and periodic patterns that last days or weeks. These characteristics underscore the importance 
of doing problem detection in real time. 

2.  A Distributed Systems Troubleshooting Infrastructure 
We are targeting an environment in which the monitored components, including long-running services 
and applications, are managed under separate administrative domains. For security, privacy, and 
manageability reasons, the logs of these components may be shared only partially. Networks between 
the monitored components and the outside world may also be slow, unreliable, or both.  

An example of one such large distributed system is the Open Science Grid (OSG), a Grid 
infrastructure currently comprising over 75 international sites. Services can have uptimes measured in 
days or weeks, and application developers regularly use tens of sites at a time. Failure rates can be 
quite high, and debugging a system problem can take days due to inaccessible logs or lack of detailed 
information.  

Our basic approach is to instrument middleware following a set of logging best practices, aggregate 
and filter logs with syslog-ng [11], and then simultaneously analyze the streaming data while archiving 
it to a relational database. We believe this provides a logging infrastructure that allows for scalable 
analysis of the distributed logs. Each component is described in more detail below. 

2.1.  Logs 
We have written a recommendations guide for Logging Best Practices [7] that combines good 

instrumentation practices with log format guidelines. 
All logs should contain a unique event name and an ISO-format timestamp [8], and all system 

operations that might fail or experience performance variations should be wrapped with start and end 
events. All logs from a given execution thread must be tagged with a globally unique ID (or GUID), 
such as a Universal Unique Identifiers (UUIDs) [9]. 

As to format, logs should be composed of lines of ASCII name=value pairs. This is highly portable, 
human-readable, and works well with line-oriented tools. 

2.2.  Basic Deployment 
Troubleshooting analysis often requires detailed comparison of distributed logged information. A 
distributed query across administrative domains can be difficult to deploy in production Grids such as 
OSG. Instead, we aggregate the data using the open source tool syslog-ng, which enables us to filter 
logs based on program name, log level, and even a regular expression on message contents (which is 
particularly easy to apply to a name=value format). Loading a subset of logs into a relational database 
enables sophisticated data mining. Historical queries can provide baseline performance information, 
and this database can be used for post-mortem anomaly detection. 

Streaming analysis of the data is more amenable to online anomaly detection. Syslog-ng can 
redirect a subset of the events (based on program name, etc.) to an analysis engine, such as a simple 



 
 
 
 
 
 

missing event detector. If all important actions are 
wrapped with start and end events as recommended, then 
a large class of troubleshooting problems can easily be 
found by simply looking for missing end events, which 
can indicate that something failed without generating an 
error, or that something is taking far too long to complete.  

This infrastructure gives the basic functionality to 
begin to do troubleshooting on large Grids such as OSG. 
It also opens the door to begin work on some higher level 
troubleshooting tools such as a more complex analysis 
engine that does anomaly detection. An example of this 
full system being used for a GridFTP third-party transfer 
is shown in Figure 1. Logs are summarized and 
forwarded to a central location using syslog-ng, where 
they are analyzed for anomalies. Figure 1: Log generation and collection 

process.   

2.3.  Data Summarizer 
Tracing is generally avoided in production environments because it can generate too much log data 
and, at high frequencies, perturb the system. However, trace data is important for understanding the 
operation of a complex system, particularly for understanding the performance with respect to a given 
user. For example, detailed logging of GridFTP events as shown in Table 1 was needed to debug 
errors in parallel streaming performance.   

 
Table 1: GrdFTP log events. 

Sender Receiver 
disk.read.start network.read.start 
disk.read.end network.read.end 
network.write.start disk.write,start 
network.write.end disk.write.end 

 

2.4.  Missing Event Detector 
 

Therefore, our approach is to moderate the log creation and processing overhead of tracing, while 
retaining most of its benefit for fine-grained application analysis, by embedding a flexible 
summarization engine inside the trace library itself. We have implemented a log summarization 
module for NetLogger [10] that can reduce the amount of log data generated by several orders of 
magnitude, while still capturing key information. 

The basic idea of the summarization is that many iterations of some tight loop can be compressed 
into a single derived event. The choice of which and how many iterations to combine is a parameter 
that can be chosen based on the needs of a given system. Our implementation uses a time period, so 
that every so many seconds, a single summary event is produced for each distinct "stream" of raw 
events. Variations on this theme include summarizing by number of events or waiting for a 
synchronous “flush” command. 

Summarization also, of course, dramatically reduces log volume. For example, collecting each disk 
and network operation on both ends of a 1Gb/s data transfer (8 events per [256K] block if each 
operation is broken into a start and end event) equates to 7.2 million events per hour for full logging, 
compared to 3,600 events per hour for one second summary events.  

2.5.  Missing Event Detector 



 
 
 
 
 
 

If, as described above, every interesting operation is wrapped with two log messages indicating its 
start and end, then a generally useful analysis is to find “start” messages that have no matching “end.” 
We have implemented this in a component called the missing event detector, which we have integrated 
into our parsing and log analysis pipeline so that missing events can be detected in a streaming fashion 
and added as a new type of event in the archive. This greatly simplifies the job of online 
troubleshooting, as a simple relational join can show the time, location, or program-related context of 
all such missing events.  

So far, we have come across two challenges. First, the “end” event may not appear because the 
developer forgot to log it. This is relatively easy to combat with decent unit tests that cover the main 
and failure paths throughout the code (something that is needed anyways). A more interesting problem 
is knowing how long to wait for the end event before declaring it missing. Often, a reasonable upper 
bound is known; if not, statistical methods can be used as in Error! Reference source not found.. We 
are working on both of these issues in the context of Globus logging and OSG deployment, and we are 
particularly conscious of the practical importance of integrating the configuration of the missing event 
detector with the data analysis interface(s). 

2.6.  MDS4 Trigger Service 
One planned extension for this work is to incorporate the MDS4 Trigger service [3] to assist with 
more immediate responses to changes of state or missing event detection. The Trigger service collects 
information using WS-RF standard interfaces and compares that data against a set of conditions 
defined in a configuration file. When a condition is met, an action takes place, such as emailing a 
system administrator or updating a website. 

Currently this service is deployed on the Earth System Grid project [2], where it monitors seven 
types of service across ten sites and reports on service failures or performance changes. This service 
has been helpful to increase deployment reliability by ensuring services that are down are reported 
automatically before they are noticed by a user. With systemwide data, a pattern of failure messages 
that occur close together in time can indicate a problem at a higher level. For example, failure 
messages indicated that hierarchical storage resource managers at three different locations failed 
simultaneously. Since the chance of such simultaneous failures is remote, these errors are more likely 
an indication of a network outage or some failure of the monitoring service or the client that queries 
the state of storage resource managers and hierarchical storage systems.  

3.  OSG Deployment 
The Open Science Grid is a distributed 
computing infrastructure for large-scale 
scientific research. It is built and operated by 
a consortium of universities, national 
laboratories, scientific collaborations and 
software developers. The CEDPS project has 
been working closely with OSG to design 
and deploy a centralized log collection 
framework based on syslog-ng.  

Figure 2: Sample OSG syslog-ng deployment  A particular configuration for syslog that 
sends logs to a central collector will be part 
of the next OSG software, called the Virtual 
Data Toolkit (VDT) [13], with a planned release in August. It is assumed that most sites will want to 
have their own central log repository, and that a subset of these logs will be forwarded to the OSG 
“Grid Operations Center” for centralized troubleshooting, auditing, and possible forensics in case of a 
security incident, as shown in Figure 2. Logs are then inserted into a mySQL database and viewable 
via a web interface. 



 
 
 
 
 
 

4.  Conclusion 
In this paper we present an infrastructure for troubleshooting performance problems in a large 

distributed system such as a Grid. We introduce a new component, an application library that performs 
application trace summarization with minimal overhead, dramatically reducing the amount of log 
information while still preserving key performance information. We also discuss our work with the 
Open Science Grid to deploy a central log collection service for their Grid Operations Center. 
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